博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
特征根求解
阅读量:5030 次
发布时间:2019-06-12

本文共 1569 字,大约阅读时间需要 5 分钟。

秩1方阵公式:若方阵$A=A_{n \times n}, rank(A)=1$,则有如下性质

(1)有分解:

\[{\rm{A}} = \alpha \beta = \left[ {\begin{array}{*{20}{c}}

{
{a_1}}&{
{a_2}}&{...}&{
{a_n}}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
{
{b_1}}\\
{
{b_2}}\\
{...}\\
{
{b_n}}
\end{array}} \right]\]

(2)$\lambda (A) = \{ tr(A),0,...,0\} $(n-1个0),$\lambda_{1}=tr(A)$ 且$A\alpha = \lambda_{1} \alpha$

证明:

\[A\alpha  = \alpha \beta \alpha  = \alpha (\beta \alpha ) = \alpha tr(A) = tr(A)\alpha  \Rightarrow \lambda  = tr(A),X = \alpha \]

(3)$\beta X=0$有n-1个无关解

证明:任取$\beta X=0$的一个解,有$\beta Y=0$:

\[AY = (\alpha \beta Y) = \alpha (\beta Y) = 0Y\]

所以$Y$为0根的特征向量,所以$\beta X=0$恰有n-1个解

平移法则:

(1)$A \pm cI$与A有相同的特征向量

\[{\rm{AX}} = \lambda X \Rightarrow AX \pm cX = \lambda X \pm cX \Rightarrow (A \pm cI)X = (\lambda  \pm c)x\]

(2)$\lambda (A \pm cI) = \{ {\lambda _1} \pm c,{\lambda _2} \pm c,...,{\lambda _n} \pm c\} $与$\lambda (A) = \{ {\lambda _1},{\lambda _2},...,{\lambda _n}\} $

(3)$\lambda (kA) = \{ k{\lambda _1},k{\lambda _2},...,k{\lambda _n}\} $与$\lambda (A) = \{ {\lambda _1},{\lambda _2},...,{\lambda _n}\}$

换位公式:$A=A_{n \times p}$,$B=B_{p \times n}$,$AB \in {C^{n \times n}},BA \in {C^{p \times p}}$,有

(1)$\left| {\lambda I - AB} \right| = {\lambda ^{n - p}}\left| {\lambda I - BA} \right|$

(2)AB与BA的特征值只差n-p个0

\[\begin{array}{l}

\lambda (BA) = \{ {\lambda _1},{\lambda _2},...,{\lambda _n}\} \\
\lambda (AB) = \{ {\lambda _1},{\lambda _2},...,{\lambda _n},0,...,0\}
\end{array}\]

(3)$tr(AB) = tr(BA) = {\lambda _1} + {\lambda _2} + ... + {\lambda _n}$

转载于:https://www.cnblogs.com/codeDog123/p/10206782.html

你可能感兴趣的文章
一件趣事
查看>>
atom 调用g++编译cpp文件
查看>>
H3C HDLC协议特点
查看>>
iptables 网址转译 (Network address translation,NAT)
查看>>
ios __block typeof 编译错误解决
查看>>
android 插件形式运行未安装apk
查看>>
ios开发之 manage the concurrency with NSOperation
查看>>
Android权限 uses-permission
查看>>
NSEnumerator用法小结
查看>>
vim如何配置go语言环境
查看>>
机器学习好网站
查看>>
python 中的 sys , os 模块用法总结
查看>>
解题:国家集训队 Middle
查看>>
响应者链
查看>>
指针从函数内部带回返回值
查看>>
在使用webView播放flash或视频文件时无法关闭声音的问题
查看>>
redhat 7 源码安装 mysql5.5.49
查看>>
CCP浅谈
查看>>
NAT虚拟网络配置
查看>>
c#部分---需要实例化的内容;
查看>>