秩1方阵公式:若方阵$A=A_{n \times n}, rank(A)=1$,则有如下性质
(1)有分解:
\[{\rm{A}} = \alpha \beta = \left[ {\begin{array}{*{20}{c}}
{ {a_1}}&{ {a_2}}&{...}&{ {a_n}}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{ {b_1}}\\{ {b_2}}\\{...}\\{ {b_n}}\end{array}} \right]\](2)$\lambda (A) = \{ tr(A),0,...,0\} $(n-1个0),$\lambda_{1}=tr(A)$ 且$A\alpha = \lambda_{1} \alpha$
证明:
\[A\alpha = \alpha \beta \alpha = \alpha (\beta \alpha ) = \alpha tr(A) = tr(A)\alpha \Rightarrow \lambda = tr(A),X = \alpha \]
(3)$\beta X=0$有n-1个无关解
证明:任取$\beta X=0$的一个解,有$\beta Y=0$:
\[AY = (\alpha \beta Y) = \alpha (\beta Y) = 0Y\]
所以$Y$为0根的特征向量,所以$\beta X=0$恰有n-1个解
平移法则:
(1)$A \pm cI$与A有相同的特征向量
\[{\rm{AX}} = \lambda X \Rightarrow AX \pm cX = \lambda X \pm cX \Rightarrow (A \pm cI)X = (\lambda \pm c)x\]
(2)$\lambda (A \pm cI) = \{ {\lambda _1} \pm c,{\lambda _2} \pm c,...,{\lambda _n} \pm c\} $与$\lambda (A) = \{ {\lambda _1},{\lambda _2},...,{\lambda _n}\} $
(3)$\lambda (kA) = \{ k{\lambda _1},k{\lambda _2},...,k{\lambda _n}\} $与$\lambda (A) = \{ {\lambda _1},{\lambda _2},...,{\lambda _n}\}$
换位公式:$A=A_{n \times p}$,$B=B_{p \times n}$,$AB \in {C^{n \times n}},BA \in {C^{p \times p}}$,有
(1)$\left| {\lambda I - AB} \right| = {\lambda ^{n - p}}\left| {\lambda I - BA} \right|$
(2)AB与BA的特征值只差n-p个0
\[\begin{array}{l}
\lambda (BA) = \{ {\lambda _1},{\lambda _2},...,{\lambda _n}\} \\\lambda (AB) = \{ {\lambda _1},{\lambda _2},...,{\lambda _n},0,...,0\} \end{array}\](3)$tr(AB) = tr(BA) = {\lambda _1} + {\lambda _2} + ... + {\lambda _n}$